2 7 M ay 2 01 5 Solution of the nonlinear inverse scattering problem by T - matrix completion . I . Theory

نویسندگان

  • Howard W. Levinson
  • Vadim A. Markel
چکیده

We propose a conceptually new method for solving nonlinear inverse scattering problems (ISPs). The method is inspired by the theory of nonlocality of physical interactions and utilizes the relevant mathematical formalism. We formulate the ISP as a problem whose goal is to determine an unknown and, generally, nonlocal interaction potential V from external scattering data. We then utilize the one-to-one correspondence between V and the T-matrix of the problem, T . An iterative algorithm is proposed in which we seek T that is (i) compatible with the data and (ii) corresponds to an interaction potential V that is as diagonally-dominated as possible. We refer to this algorithm as to the data-compatible T-matrix completion (DCTMC). This paper is Part I in a two-part series and contains theory only. Numerical examples are given in Part II (arXiv:1505.06777). Submitted to: Inverse Problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of the nonlinear inverse scattering problem by T-matrix completion. I. Theory.

We propose a conceptually different method for solving nonlinear inverse scattering problems (ISPs) such as are commonly encountered in tomographic ultrasound imaging, seismology, and other applications. The method is inspired by the theory of nonlocality of physical interactions and utilizes the relevant formalism. We formulate the ISP as a problem whose goal is to determine an unknown interac...

متن کامل

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

ar X iv : h ep - t h / 01 06 06 6 v 2 1 5 M ay 2 00 3 Uniqueness of Inverse Scattering Problem in Local Quantum

It is shown that the operator algebraic setting of local quantum physics leads to a uniqueness proof for the inverse scattering problem. The important mathematical tool is the thermal KMS aspect of wedge-localized operator algebras and its strengthening by the requirement of crossing symmetry for generalized formfactors. The theorem extends properties which were previously seen in d=1+1 factori...

متن کامل

Solution of the nonlinear inverse scattering problem by T-matrix completion. II. Simulations.

This is Part II of the paper series on data-compatible T-matrix completion (DCTMC), which is a method for solving nonlinear inverse problems. Part I of the series [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043317 (2016)10.1103/PhysRevE.94.043317] contains theory and here we present simulations for inverse scattering of scalar waves. The underlying mathematical model is the scalar wave e...

متن کامل

A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015